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Phase transition in fiber bundle models with recursive dynamics

Pratip Bhattacharyya,* Srutarshi Pradhan,† and Bikas K. Chakrabarti‡

Theoretical Condensed Matter Physics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF,
Bidhannagar, Kolkata 700 064, India

~Received 14 January 2003; published 28 April 2003!

We study the phase transition in a class of fiber bundle models in which the fiber strengths are distributed
randomly within a finite interval and global load sharing is assumed. The dynamics is expressed as recursion
relations for the redistribution of the applied stress and the evolution of the surviving fraction of fibers. We
show that an irreversible phase transition of second-order occurs, from a phase of partial failure to a phase of
total failure, when the initial applied stress just exceeds a critical value. The phase transition is characterized
by static and dynamic critical properties. We calculate exactly the critical value of the initial stress for three
models of this kind, each with a different distribution of fiber strengths. We derive exact expressions for the
order parameter, the susceptibility to changes in the initial applied stress, and the critical relaxation of the
surviving fraction of fibers for all the three models. The static and dynamic critical exponents obtained from
these expressions are found to be universal.
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I. INTRODUCTION

Fiber bundle models describe the collective statics
dynamics of failure in a set of fibers with random streng
under the application of a stress~force per fiber! @1,2#. A
typical model of this kind is shown schematically in Fig.
These models are constructed for the purpose of explai
the propagation of fractures in a loaded heterogeneous m
rial and to determine the conditions under which it brea
completely @3,4#. The latter requires the calculation of th
strength of the bundle from the strengths of its constitu
fibers which, by reasonable assumption, are drawn at ran
from a chosen probability distribution@1#. In some of the
models@1,5,6# it is assumed that the load is always divid
equally among all intact fibers of the bundle~global load
sharing!, while in other models@7–11# it is assumed tha
when a fiber breaks, the stress it was last bearing gets
tributed only among the fibers next to it~local load sharing!.
The dynamics or propagation of fracture in a fiber bundle
been characterized in two ways: first, by the probability d
tribution of bursts of different sizes that occur within th
bundle as the stress is gradually increased till the bun
breaks completely@6,13–15#; second, by the lifetime of a
fiber bundle with fatigue under an applied stress@2,11,12#. It
was suggested in Ref.@16# that the breakdown of a stati
fiber bundle with global load sharing can be described a
first-order phase transition, because the surviving fraction
fibers has a discontinuity at the point of breakdown. Ho
ever, the susceptibility to the applied stress was shown
diverge at the breakdown point and for this reason it w
later suggested that the transition is of second order@18–21#.

In this paper, we report on the universality of the pha
transition in a class of fiber bundle models. The main feat
of these models is a pair of dynamical recursion relatio
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which, similar to the formulation in Refs.@19,20#, expresses
the evolution of the fiber bundle under the application o
finite stress. The strengths of the fibers are assigned
domly within a finite interval of values which is true for rea
fiber bundles. We study three models of this kind: in the fi
model, the fiber strengths are distributed with uniform de
sity; in the second model, the fiber strengths are distribu
with a linearly increasing density, which means that there
more strong fibers than weak ones; in the third model,
fiber strengths are distributed with a linearly decreasing d
sity so that there are more weak fibers. From the express
of the fixed points of the dynamics, we find that there is
critical initial value of the applied stress in each of the thr
models: on exceeding this critical value, the fiber bun
undergoes an irreversible transition from a phase of pa
failure to a phase of total failure. When the initial applie
stress is less than or equal to the critical value, only a fin
fraction of the fibers breaks as the bundle evolves to a s
of mechanical equilibrium; this is the phase of partial failu
If, on the other hand, the initial applied stress is greater t
the critical value, mechanical equilibrium is never reach
and the entire fiber bundle eventually breaks down; this
the phase of total failure. We define an order parameter
shows that the phase transition is of second order. As
initial applied stress approaches its critical value from belo
the order parameter is found to reduce to zero continuou
following a power law, while the susceptibility of the surviv
ing fraction of fibers to changes in the initial stress is fou
to diverge, also by a power law. We derive asymptotic so
tions of the dynamical recursion relations for the survivi
fraction of fibers at the critical values of the initial applie
stress of each model. These solutions show that the cri
relaxation of the fiber bundle toward the fixed point is
power-law decay. The critical exponents in these power la
are found to be universal, i.e., independent of the distribut
of fiber strengths in the bundle.

II. DYNAMICS OF THE FIBER BUNDLE

We consider fiber bundle models with global load shar
approximation, i.e., any force applied on a bundle is sha
©2003 The American Physical Society22-1
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FIG. 1. Schematic diagram of a bundle ofN elastic fibers with random strengths, attached in parallel to a fixed plate at the top
movable plate at the bottom. The fibers are shown as vertical solid lines and the position of the plates by bold horizontal lines. T
shows the fibers arranged in increasing order of strength from left to right;sL andsR are the strengths of the weakest~extreme left! and the
strongest~extreme right! fibers, respectively.~a! For an initial applied stresss0 , s0<sL , the fibers only get stretched from their relaxe
position~shown by the bold broken line!; the straind measures the elastic deformation of the bundle.~b! For sL,s0<sR , the fibers begin
to break causing a plastic deformation of the bundle~now given by the straind8); the figure schematically shows the strained positions
the broken fibers at the time of their breaking in order to give an impression of successive failures. Whens0.sR , all fibers in the bundle
break at once.
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equally by all the intact fibers in it. The strength of each fib
is determined by a threshold values threshof the stress that it
can bear, beyond which the fiber breaks. The threshold s
of the fibers in the bundle are distributed randomly with
normalized density r(s thresh) within a finite interval
@sL ,sR#, wheresL andsR are, respectively, the strengths
the weakest and the strongest fiber in the bundle:

E
sL

sR
r~s thresh!ds thresh51. ~1!

The probability distribution of the threshold stress is giv
by

P~s thresh!55
0, 0<s thresh,sL

E
sL

s thresh
r~s!ds, sL<s thresh<sR

1, sR,s thresh.

~2!

We study the breaking dynamics of the model under
application of an initial stresss0 ~for example, by attaching
an external load to the bottom plate in Fig. 1!, where the
stress is defined as the force exerted per fiber. The fi
whose strengths are less thans0 break immediately. Follow-
ing this initial rupture, the applied stress gets redistribu
among the surviving fibers. Since the number of fibers s
porting the load has decreased, the redistributed stres
greater than the initial stress and this causes further brea
of fibers. The process continues till a state of mechan
equilibrium is reached, where the surviving fibers ha
strengths greater than the redistributed stress, or till all fib
in the bundle are broken. The state of mechanical equ
rium, if it exists, appears as a fixed point of the model un
the assigned dynamics.

The nature of the breaking dynamics allows it to be re
resented as a recursion relation operating in discrete
steps@17,19,20#. If Ut is the fraction of fibers in the initia
04612
r

ss

e

rs

d
-
is

ng
al
e
rs
-
r

-
e

bundle that survive after time stept, the redistributed stres
due to global load sharing aftert time steps is

s t5
s0

Ut
. ~3!

After t11 time steps, the surviving fraction of fibers b
comes

Ut11512P~s t!. ~4!

In a real bundle, comprising of a finite number of fibe
there will be fluctuations in the local density of fibe
strengths as well as the load sharing. Such fluctuations
ignored in the construction of Eqs.~3! and ~4!. It follows
from Eqs.~3! and~4! that the quantitiess t andUt evolve by
the recurrences

s t115
s0

12P~s t!
~5!

and

Ut11512P~s0 /Ut!, U051, ~6!

which formally define the dynamics of this class of mode
With the probability distribution, Eq.~2!, the recursion rela-
tion ~6! clearly shows that none of the fibers break for
initial stresss0<sL , while on application ofs0.sR , all
fibers in the bundle break simultaneously.

The fixed points@22# of the model,s* and U* , are de-
termined by the following relations:

s* @12P~s* !#5s0 ~7!

and

U* 1P~s0 /U* !51. ~8!
2-2
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Though the quantitiess t and Ut evolve in time till they
reach their fixed point values, Eq.~3! shows that their prod-
uct s tUt is a constant of motion, always equal to the init
values0. All static and dynamic properties of the models a
consequences of this invariance.

III. CRITICAL PROPERTIES FOR UNIFORM DENSITY
OF FIBER STRENGTHS

We consider first the case where the random stren
s threshof the fibers are distributed with uniform density in th
interval @sL ,sR#. The normalized density function is

r~s thresh!5H 0, 0<s thresh,sL

1

sR2sL
, sL<s thresh<sR

0, sR,s thresh

~9!

and the probability distribution, by the definition in Eq.~2!,
is given by~Fig. 2!

P~s thresh!5H 0, 0<s thresh,sL

s thresh2sL

sR2sL
, sL<s thresh<sR

1, sR,s thresh.

~10!

We consider onlysR.sL as the casesR5sL is trivial.
With this particular choice of the distribution of fibe

strengths, the recursion relations~5! and ~6!, for an initial
stresssL<s0<sR , appear as

s t115s0S sR2sL

sR2s t
D ~11!

and

Ut115
1

sR2sL
S sR2

s0

Ut
D , U051. ~12!

The fixed point equations, obtained from Eqs.~7! and ~8!,
appear in quadratic form

FIG. 2. ~a! The density functionr and~b! the probability distri-
bution P of random fiber strengthss thresh distributed with uniform
density in the interval@sL ,sR#. In the particular instance shown i
the figuresL50.15 andsR50.75.
04612
l

hs

~s* !22sRs* 1s0~sR2sL!50 ~13!

and

~U* !22S sR

sR2sL
DU* 1

s0

sR2sL
50. ~14!

Consequently, each of the recurrences, Eqs.~11! and ~12!,
have two fixed points

s1,2* 5
sR

2
6~sR2sL!1/2F sR

2

4~sR2sL!
2s0G1/2

, ~15!

U1,2* 5
sR

2~sR2sL!
6

1

~sR2sL!1/2F sR
2

4~sR2sL!
2s0G1/2

.

~16!

The subscripts 1 and 2 stand for the expressions contai
the plus and the minus sign, respectively. Whiles2* andU1*
are stable fixed points,s1* andU2* are unstable~Fig. 3!. It is
clear that the fixed points for the redistributed stress and
surviving fraction of fibers are related by

U1,2* 5
sR2s2,1*

sR2sL
. ~17!

The quadratic equations~13! and~14! show that the initial
applied stresss0 has a critical value

s0
crit5

sR
2

4~sR2sL!
, ~18!

at which their discriminants become zero and only a sta
fixed point exists. Since boths andU have physical mean
ings, a state of mechanical equilibrium exists if the quantit
s2* andU1* are positive real valued; this happens only wh
s0<s0

crit . For s0.s0
crit , there are no real-valued fixe

FIG. 3. The fixed points of~a! the redistributed stress, and~b!
the surviving fraction of fibers for the particular probability distr
bution of fiber strengths shown in Fig. 2. In each part of the figu
the curve for the stable fixed points is shown by a bold solid l
and that for the unstable fixed points is shown by a bold bro
line. As in Fig. 2, we havesL50.15 andsR50.75, so thats0

crit

50.234 375; the position of the critical point is marked by an
rowhead. Fors0<sL , the fixed points are trivial, since there are n
broken fiberss* 5s0 andU* 5U051.
2-3



e
ov
b-

xe

y

e

n

in
n

e
lu

o
al
f
-

of
to

f.
of

gths
g

er

BHATTACHARYYA, PRADHAN, AND CHAKRABARTI PHYSICAL REVIEW E 67, 046122 ~2003!
points—the dynamics will continue till all fibers in th
bundle are broken. Therefore, a transition ocurs just ab
s0

crit from a phase of partial failure of the bundle in equili
rium to a phase of total failure. The order parameterO for
this phase transition is defined in terms of the stable fi
point for the surviving fraction of fibers:

O[U1* 2U12crit* , sL<s0<s0
crit , ~19!

where

U12crit* 5
sR

2~sR2sL!
~20!

is the value ofU1* under the critical initial stress. As Eq.~16!
shows, the order parameter goes to zero continuously b
power law ass0 approaches its critical value from below:

O5S s0
crit2s0

sR2sL
D 1/2

, sL<s0<s0
crit . ~21!

It is obvious that the critical value must have the low
bound,

s0
crit>sL , ~22!

which, for the expression given in Eq.~18!, requires that

sR>2sL . ~23!

The above condition~23! in turn imposes an upper bound o
the critical value of the initial stress:

s0
crit<

sR

2
. ~24!

Static critical behavior of the fiber bundle is observed
the susceptibility of the fixed point of the surviving fractio
of fibers to changes in the initial stresss0. From Eq.~16!,
we see that the susceptibility diverges in the form of a pow
law as the initial applied stress approaches its critical va
from below:

x5UdU1*

ds0
U}~s0

crit2s0!21/2, sL<s0<s0
crit . ~25!

Dynamical critical behavior is observed in the process
relaxation of the fiber bundle to a fixed point. At the critic
point s05s0

crit , the evolution of the surviving fraction o
fibers given by Eq.~12! is reduced to the following recur
rence:

Ut115
sR

sR2sL
F12

sR

4~sR2sL!

1

Ut
G , U051, ~26!

and its only fixed point, a stable one, is given by Eq.~20!.
The recurrence~26! has a closed-form solution:

Ut2U12crit* 5
U12crit* ~12U12crit* !

11~12U12crit* !~ t21!
. ~27!
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Thus, the asymptotic behavior of the surviving fraction
fibers is a power-law decay—a critically slow relaxation
the fixed point:

Ut2U12crit* ;
U12crit*

t
, t→`

;
1

2 S sR

sR2sL
D1

t
. ~28!

A special case of this model, withsL50 andsR51, was
studied in Ref.@23#. The critical properties obtained in Re
@23# can now be derived easily from the general results
this section.

IV. CRITICAL PROPERTIES FOR LINEARLY
INCREASING DENSITY OF FIBER STRENGTHS

We consider next the case where the random stren
s thresh of the fibers are distributed with linearly increasin
density in the interval@sL ,sR#, sR.sL . The normalized
density function and the probability distribution of the fib
strengths are given by~illustrated in Fig. 4!

r~s thresh!5H 0, 0<s thresh,sL

2(s thresh2sL)

(sR2sL)2 , sL<s thresh<sR

0, sR,s thresh

~29!

and

P(s thresh)5H 0, 0<s thresh,sL

S s thresh2sL

sR2sL
D 2

, sL<s thresh<sR

1, sR,s thresh.

~30!

Here, we introduce the following transformed quantities:

G05
s0

sR2sL
, GL5

sL

sR2sL
, G t5

s t

sR2sL
. ~31!

FIG. 4. ~a! The density functionr and~b! the probability distri-
bution P of random fiber strengthss thresh distributed with linearly
increasing density in the interval@sL ,sR#. In the particular in-
stance shown in the figuresL50.15 andsR50.75.
2-4
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For an initial stresssL<s0<sR ~or GL<G0<GL11)
along with the distribution of fiber strengths given by E
~30!, the recursion relations~5! and ~6! appear as

G t115
G0

12~G t2GL!2 ~32!

and

Ut11512S G0

Ut
2GLD 2

, U051. ~33!

The fixed point equations, Eqs.~7! and ~8!, now assume the
following cubic form:

~G* !322GL~G* !21~GL
221!G* 1G050, ~34!

whereG* 5s* /(sR2sL) and

~U* !31~GL
221!~U* !22~2GLG0!U* 1G0

250. ~35!

Consequently, each of the recurrences~32! and ~33! have
three fixed points—only one in each case is found to
stable. For the redistributed stress, the fixed points are

G1* 5
2

3
GL12K cos

F

3
, ~36!

G2* 5
2

3
GL2K cos

F

3
1A3K sin

F

3
, ~37!

G3* 5
2

3
GL2K cos

F

3
2A3K sin

F

3
, ~38!

where

K5
1

3
A31GL

2 ~39!

and

cosF5
GL~92GL

2!227G0 /2

~31GL
2!3/2

. ~40!

Similarly, for the surviving fraction of fibers, the fixed poin
are

U1* 5
12GL

2

3
12J cos

Q

3
, ~41!

U2* 5
12GL

2

3
2J cos

Q

3
1A3J sin

Q

3
, ~42!

U3* 5
12GL

2

3
2J cos

Q

3
2A3J sin

Q

3
, ~43!

where
04612
.

e

J5
1

3
A~GL

221!216GLG0 ~44!

and

cosQ5
~12GL

2!@~GL
221!219GLG0#227G0

2/2

@~GL
221!216GLG0#3/2

. ~45!

Of these fixed points,G2* and U1* are stable, whereasG1* ,
G3* andU2* , U3* are unstable~Fig. 5!.

Similar to the case in the preceding section the discri
nants of the cubic equations~34! and~35! become zero at the
critical values0

crit ~or G0
crit) of the initial applied stress:

G0
crit5

s0
crit

sR2sL
5

2

27
@GL~92GL

2!1~31GL
2!3/2# ~46!

and then each of the quantitiesG andU have one stable and
one unstable fixed point. As before the critical point has
trivial lower bound

s0
crit>sL . ~47!

The expression ofG0
crit in Eq. ~46! shows that it approache

the lower bound asGL→` which happens for finite value
of sL andsR when (sR2sL)→0. It follows that the upper
bound for the critical point is also trivial:

s0
crit<sR , ~48!

which is different from the condition~24! for the case of
uniform distribution. At the critical point we get from Eqs
~40! and ~45!,

FIG. 5. The fixed points of~a! the redistributed stress, and~b!
the surviving fraction of fibers for the probability distribution o
fiber strengths shown in Fig. 4. In each part of the figure, the cu
for the stable fixed points is shown by a bold solid line and those
the unstable fixed points are shown by bold broken lines. We h
sL50.15 andsR50.75, so thats0

crit50.3375; the position of the
critical point is marked by an arrowhead. As in the previous ca
for s0<sL , the fixed points are trivial, since there are no brok
fiberss* 5s0 andU* 5U051.
2-5
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cosFcrit5cosQcrit521 ~49!

or

Fcrit5Qcrit5p. ~50!

The stable fixed pointsG2* andU1* are positive real val-
ued whenG0<G0

crit ; thus the fiber bundle always reaches
state of mechanical equilibrium after partial failure under
initial applied stresss0<s0

crit . For s0.s0
crit ~or G0.G0

crit),
G2* and U1* are no longer real valued and the entire fib
bundle eventually breaks down. The transition from t
phase of partial failure to the phase of total failure tak
place whens0 just exceedss0

crit and the order parameter fo
this phase transition is defined as in Eq.~19!

O[U1* 2U12crit* . ~51!

Close to the critical point, but below it, we can write, fro
Eqs.~45! and ~50!, that

p2Q.sinQ.
3A3G0

crit~31GL
2!3/4~G0

crit2G0!1/2

@~GL
221!216GLG0

crit#3/2
~52!

and the expressions for the fixed points in Eqs.~41! and~42!
reduce to the following forms:

U1* .U12crit* 1
G0

crit~31GL
2!3/4

~GL
221!216GLG0

crit ~G0
crit2G0!1/2 ~53!

and

U2* .U2-crit* 2
G0

crit~31GL
2!3/4

~GL
221!216GLG0

crit ~G0
crit2G0!1/2, ~54!

where

U12crit* 5U22crit* 5
12GL

2

3
1

1

3
A~GL

221!216GLG0
crit

~55!

is the stable fixed point value of the surviving fraction
fibers under the critical initial stresss0

crit . Therefore, follow-
ing the definition of the order parameter in Eq.~51!, we get
from the above equation

O5
G0

crit~31GL
2!3/4

~GL
221!216GLG0

crit ~G0
crit2G0!1/2, G0→G0

crit .

~56!

On replacing the transformed variableG0 by the originals0,
Eq. ~56! shows that the order parameter goes to zero cont
ously, following the same power law as in Eq.~21! for the
previous case whens0 approaches its critical value from
below.

Similarly, the susceptibility diverges by the same pow
law as in Eq.~25!, on approaching the critical point from
below:
04612
n

r
e
s
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r

x5UdU1*

ds0
U}~G0

crit2G0!21/2, G0→G0
crit. ~57!

The critical dynamics of the fiber bundle is given by th
following asymptotic closed form solution of the recurren
~33! for G05G0

crit :

Ut2U12crit* ;F ~U12crit* !4

3~G0
crit!222GLG0

critU12crit* G1

t
, t→`,

~58!

whereG0
crit and U12crit* are given in Eqs.~46! and ~55!, re-

spectively. This shows that the asymptotic relaxation of
surviving fraction of fibers to its stable fixed point under t
critical initial stress has the same inverse of time form
found in the case of uniform density of fiber strengths@Eq.
~28!#.

V. CRITICAL PROPERTIES FOR LINEARLY
DECREASING DENSITY OF FIBER STRENGTHS

Contrary to the case of the preceding section, we n
consider a fiber bundle where the random threshold va
are distributed with a linearly decreasing density in the int
val @sL ,sR#, sR.sL . Instead of Eqs.~29! and ~30!, we
now have the following normalized density function an
probability distribution~illustrated in Fig. 6!:

r~s thresh!5H 0, 0<s thresh,sL

2~sR2s thresh!
~sR2sL!2 , sL<s thresh<sR

0, sR,s thresh

~59!

and

FIG. 6. ~a! The density functionr and~b! the probability distri-
bution P of random fiber strengthss thresh distributed with linearly
decreasing density in the interval@sL ,sR#. Similar to the cases
shown in Figs. 2 and 4, we havesL50.15 andsR50.75 in this
example also.
2-6
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P~s thresh!5H 0, 0<s thresh,sL

12S sR2s thresh

sR2sL
D 2

, sL<s thresh<sR

1, sR,s thresh.
~60!

With the transformed quantities, defined in Eq.~31!, the
recurrences~5! and ~6! for sL<s0<sR appear as

G t115
G0

~11GL2G t!
2 ~61!

and

Ut115S 11GL2
G0

Ut
D 2

, U051. ~62!

The fixed point equations are again cubic

~G* !322~11GL!~G* !21~11GL!2G* 2G050, ~63!

~U* !32~11GL!2~U* !212~11GL!G0U* 2G0
250

~64!

and they have the following solutions:

G1* 5
2

3
~11GL!12K8cos

F8

3
, ~65!

G2* 5
2

3
~11GL!2K8cos

F8

3
1A3K8sin

F8

3
, ~66!

G3* 5
2

3
~11GL!2K8cos

F8

3
2A3K8sin

F8

3
, ~67!

where

K85
11GL

3
, ~68!

cosF85
27G0

2~11GL!3 21 ~69!

and

U1* 5
~11GL!2

3
12J8cos

Q8

3
, ~70!

U2* 5
~11GL!2

3
2J8cos

Q8

3
1A3J8sin

Q8

3
, ~71!

U3* 5
~11GL!2

3
2J8cos

Q8

3
2A3J8sin

Q8

3
, ~72!

where

J85
1

3
A~11GL!426~11GL!G0, ~73!
04612
cosQ85
~11GL!3@~11GL!329G0#127G0

2/2

@~11GL!426~11GL!G0#3/2
. ~74!

Here G3* and U1* are stable fixed points, while the rest a
unstable~Fig. 7!.

The discriminants of Eqs.~63! and ~64! show that the

critical applied stress in this case,s0
crit8 ~or G0

crit8), is given
by

G0
crit85

s0
crit8

sR2sL
5

4

27
~11GL!3 ~75!

or

s0
crit85

4sR
3

27~sR2sL!2 . ~76!

In order to satisfy the conditions0
crit8>sL , it requires

from Eq. ~76! that

sR>3sL , ~77!

which imposes an upper bound

s0
crit8<

sR

3
. ~78!

Like before, forG0<G0
crit8 , the stable fixed points are rea

valued, which indicates that only partial failure of the fib
bundle takes place before a state of mechanical equilibr

is reached; forG0.G0
crit8 , the fixed points are not real and

phase of total failure exists. The order parameterO of the
transition is given by the definition in Eq.~51!. For G0

5G0
crit8 we get the following properties from Eq.~69!–~71!

and Eq.~74!:

FIG. 7. The fixed points of~a! the redistributed stress, and~b!
the surviving fraction of fibers for the probability distribution o
fiber strengths shown in Fig. 6. The curve for the stable fixed po
is shown by a bold solid line and those for the unstable fixed po
are shown by bold broken lines. In this example too, we havesL

50.15 andsR50.75; heres0
crit50.173 611, marked by an arrow

head. The critical point is located lower than that in Fig. 5 due
abundance of fibers of lower strengths compared to the prev
case.
2-7



q

or
os

r-

nd
n
u
a

-
i-
ea
f t
a
e

r

n

not

of
ied
how
the
the
hout
in
ory.

by
the
of
t
he
an
r-
s
al
t.
nt
to
ality
in

be

ion

ot
ion
ns

els
old

ied

his
er

t in
od-

o-
the
ss
-
m-

BHATTACHARYYA, PRADHAN, AND CHAKRABARTI PHYSICAL REVIEW E 67, 046122 ~2003!
U12crit* 5U22crit* 5 4
9 ~11GL!2, ~79!

cosQcrit8 521 or Qcrit8 5p ~80!

and

cosFcrit8 51 or Fcrit8 50. ~81!

Comparing Eqs.~81! and~80! with Eq. ~50!, we see that the
critical values ofQ andQ8 are the same, whereas those ofF
andF8 differ by p radians.

Near the critical point, but below it, we get from Eqs.~70!
and ~71!

U1* .U12crit* 1
4

3
~11GL!1/2~G0

crit82G0!1/2 ~82!

and

U2* .U22crit* 2
4

3
~11GL!1/2~G0

crit82G0!1/2. ~83!

Therefore, by the definition of the order parameter in E
~51! and that of the susceptibility in Eq.~57!, we get in this

caseO}(G0
crit82G0)1/2 and x}(G0

crit82G0)21/2, G0→G0
crit .

These power laws have the same exponents as the c
sponding ones in the previous cases and differ from th
only at the critical point and the critical amplitude.

At the critical point, the asymptotic relaxation of the su
viving fraction of fibers to its stable fixed point@obtained as
an asymptotic solution to Eq.~62!# is again found to be a
power law decay, similar to Eqs.~28! and ~58!:

Ut2U12crit* ;
4

3

U12crit*

t
, t→`

;
16

27
~11GL!2

1

t
. ~84!

The critical behavior of the models reported in this a
the previous two sections show that the power laws fou
here are independent of the form of the probability distrib
tion P. The three probability distributions studied have
common feature: the functions* @12P(s* )# has a maxi-
mum in the interval (sL ,sR) which corresponds to the criti
cal value of the initial applied stress. All probability distr
butions having this property are, therefore, expected to l
to the same universality class as the three studied here. I
probability distribution does not have this property, we m
not observe a phase transition at all. For example, consid
fiber bundle model withP(s thresh)5121/s thresh, s thresh
>1. Heres* @12P(s* )#51 and the evolution of the fibe
bundle is given by the recursion relationUt115Ut /s0 that
implies that there is no dynamics at all fors051 and an
exponential decay to complete failure,Ut5(s0)2t, for s0
.1. There are no critical phenomena and, therefore,
04612
.

re-
e

d
-

d
he
y
r a

o

phase transition. However this general conclusion may
be true for finite-sized bundles@24#.

VI. DISCUSSION

In this paper, we have studied the critical properties
failure in a class of fiber bundle models under an appl
stress. The models are simple dynamical systems that s
an irreversible phase transition. We have determined
static and dynamic critical properties associated with
phase transition. Since the models have been defined wit
any fluctuations in the local density of fiber strengths or
the load sharing, these are equivalent to a mean-field the
We have defined a new order parameter in Eq.~19! which
shows that the transition is of second order. It is supported
facts that are characteristic of second-order transitions:
susceptibility diverges at the critical point and the decay
surviving fraction of fibers with time at the critical poin
follows a power law. Besides, the relaxation time of t
bundle diverges from both sides of the critical point: for
initial stress infinitesimally below the critical point the su
viving fraction of fibers will take an infinite time to reach it
stable fixed point, whereas infinitesimally above the critic
point it will take an infinite time to get past the fixed poin
By obtaining the same critical exponents for three differe
probability distributions of fiber strengths, we are inclined
conclude that these exponents are universal. The univers
of the critical exponent for susceptibility was also reported
Refs.@19,20#.

The two models studied in Secs. IV and V seem to
related by the fact that their density functions, Eqs.~29! and
~59!, can be transformed from one to the other by a reflect
on the line s thresh5(sL1sR)/2 @compare Figs. 4~a! and
6~a!#. But the fixed point equations and their solutions do n
have this symmetry. This is because the density funct
r(s thresh) does not appear directly in the recursion relatio
for the dynamics. It is the distribution functionP(s thresh)
that appears in the recursion relations. Equations~30! and
~60! show that the distribution functions of these two mod
are not mutually symmetric about any value of the thresh
stresss thresh @compare Figs. 4~b! and 6~b!#. However a cer-
tain relation exists between the critical values of the appl
stress for a special case of these two models: ifsL50, we
get from Eqs. ~46! and ~75! that s0

crit/sR5A4/27 and

s0
crit8/sR54/27, respectively; therefore we haves0

crit8/sR

5(s0
crit/sR)2.

Finally, we compare the fiber bundle model studied in t
paper with the mean-field Ising model. Though the ord
parameter exponent~equal to1

2 ) of this model is identical to
that of the mean-field Ising model the two models are no
the same universality class. The susceptibility in these m
els diverge with critical exponents12 and 1, respectively, on
approaching the critical point. The dynamical critical exp
nents are not the same either: in this fiber bundle model
surviving fraction of fibers under the critical applied stre
decays toward its stable fixed point ast21, whereas the mag
netization of the mean-field Ising model at the critical te
perature decays to zero ast21/2.
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