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Phase transition in fiber bundle models with recursive dynamics
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We study the phase transition in a class of fiber bundle models in which the fiber strengths are distributed
randomly within a finite interval and global load sharing is assumed. The dynamics is expressed as recursion
relations for the redistribution of the applied stress and the evolution of the surviving fraction of fibers. We
show that an irreversible phase transition of second-order occurs, from a phase of partial failure to a phase of
total failure, when the initial applied stress just exceeds a critical value. The phase transition is characterized
by static and dynamic critical properties. We calculate exactly the critical value of the initial stress for three
models of this kind, each with a different distribution of fiber strengths. We derive exact expressions for the
order parameter, the susceptibility to changes in the initial applied stress, and the critical relaxation of the
surviving fraction of fibers for all the three models. The static and dynamic critical exponents obtained from
these expressions are found to be universal.
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I. INTRODUCTION which, similar to the formulation in Ref$19,20, expresses
the evolution of the fiber bundle under the application of a

Fiber bundle models describe the collective statics andinite stress. The strengths of the fibers are assigned ran-

dynamics of failure in a set of fibers with random strengthsdomly within a finite interval of values which is true for real
under the application of a stre¢force per fiber [1,2]. A fiber bundles. We study three models of this kind: in the first

typical model of this kind is shown schematically in Fig. 1 model, the fiber strengths are distributed with uniform den-

These models are constructed for the purpose of explainingzty; in the second model, the fiber strengths are distributed

) ) jith a linearly increasing density, which means that there are
the propagation of fractures in a loaded heterogeneous mat ore strong fibers than weak ones; in the third model, the

rial and to determine the condlt_lons under Wh'c.h I breaksfiber strengths are distributed with a linearly decreasing den-
completely[3,4]. The latter requires the calculation of the g s that there are more weak fibers. From the expressions
;trength pf the bundle from the strgngths of its constitueng¢ e fixed points of the dynamics, we find that there is a
fibers which, by reasonable assumption, are drawn at randoyitica| initial value of the applied stress in each of the three
from a chosen probability distributioffl]. In some of the  mogels: on exceeding this critical value, the fiber bundle
models[1,5,6] it is assumed that the load is always divided yndergoes an irreversible transition from a phase of partial
equally among all intact fibers of the bundlglobal load  fajlure to a phase of total failure. When the initial applied
sharing, while in other modeld7-11] it is assumed that stress is less than or equal to the critical value, only a finite
when a fiber breaks, the stress it was last bearing gets digraction of the fibers breaks as the bundle evolves to a state
tributed only among the fibers next to(lbcal load sharing  of mechanical equilibrium; this is the phase of partial failure.
The dynamics or propagation of fracture in a fiber bundle hadf, on the other hand, the initial applied stress is greater than
been characterized in two ways: first, by the probability dis-the critical value, mechanical equilibrium is never reached
tribution of bursts of different sizes that occur within the and the entire fiber bundle eventually breaks down; this is
bundle as the stress is gradually increased till the bundlghe phase of total failure. We define an order parameter that
breaks completely6,13—15; second, by the lifetime of a shows that the phase transition is of second order. As the
fiber bundle with fatigue under an applied strgg41,17. It initial applied stress qpproaches its critical value from below,
was suggested in Ref16] that the breakdown of a static the or.der parameter is foynd to reduce to zero contlnuqusly
fiber bundle with global load sharing can be described as £!lowing a power law, while the susceptibility of the surviv-
first-order phase transition, because the surviving fraction of?d fraction of fibers to changes in the initial stress is found
fibers has a discontinuity at the point of breakdown. How-© diverge, also by a power law. We derive asymptotic solu-

ever, the susceptibility to the applied stress was shown t ons of the.dynamical rqursion relations for_ th? survi\(ing
raction of fibers at the critical values of the initial applied

diverge at the breakdown point and for this reason it wa . o
later suggested that the transition is of second ot 2. stress of each model. These solutions show that the critical
erelaxation of the fiber bundle toward the fixed point is a

In this paper, we report on the universality of the phas law d The critical in th |
transition in a class of fiber bundle models. The main featur®OWer-law decay. The critical exponents in these power laws

of these models is a pair of dynamical recursion relationéare,found to be unjversal, i.e., independent of the distribution
of fiber strengths in the bundle.

. . ) II. DYNAMICS OF THE FIBER BUNDLE
*Electronic adderss: pratip@cmp.saha.ernet.in

"Electronic address: spradhan@cmp.saha.ernet.in We consider fiber bundle models with global load sharing
*Electronic address: bikas@cmp.saha.ernet.in approximation, i.e., any force applied on a bundle is shared
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FIG. 1. Schematic diagram of a bundle Mfelastic fibers with random strengths, attached in parallel to a fixed plate at the top and a
movable plate at the bottom. The fibers are shown as vertical solid lines and the position of the plates by bold horizontal lines. The figure
shows the fibers arranged in increasing order of strength from left to tighand o are the strengths of the weakésktreme left and the
strongestiextreme righk fibers, respectively@) For an initial applied stress,, cg<o_, the fibers only get stretched from their relaxed
position(shown by the bold broken lingthe straind measures the elastic deformation of the bundgFor o <oy<opR, the fibers begin
to break causing a plastic deformation of the buridiew given by the straid’); the figure schematically shows the strained positions of
the broken fibers at the time of their breaking in order to give an impression of successive failuresoy¥heg, all fibers in the bundle
break at once.

equally by all the intact fibers in it. The strength of each fiberbundle that survive after time stépthe redistributed stress
is determined by a threshold value, s, 0f the stress that it due to global load sharing aftétime steps is
can bear, beyond which the fiber breaks. The threshold stress

of the fibers in the bundle are distributed randomly with a 0o
normalized density p(oesy Within a finite interval Ut—u_t' )
[0, ,or], Whereo| andog are, respectively, the strengths of
the weakest and the strongest fiber in the bundle: After t+1 time steps, the surviving fraction of fibers be-
comes
OR
J:TL p(o'thresl')do'thresh_ 1 (1) Upp=1— P(O’t). (4)
The probability distribution of the threshold stress is givenln a real bundle, comprising of a finite number of fibers,
by there will be fluctuations in the local density of fiber
strengths as well as the load sharing. Such fluctuations are
0, O<=0hres< oL ignored in the construction of Eq$3) and (4). It follows
Fihresh from Egs.(3) and(4) that the quantities; andU, evolve by
P(Tthresn = f p(o)do, o <opes=or (2) the recurrences
T
1, OR< Othresh 90

O-t+1:1_P(O-) (5)
We study the breaking dynamics of the model under the ‘
application of an initial streseq (for example, by attaching gng
an external load to the bottom plate in Fig, Where the
stress is defined as the force exerted per fiber. The fibers Uis1=1-P(0o/Uy), Ug=1, (6)
whose strengths are less thay break immediately. Follow-
ing this initial rupture, the applied stress gets redistributedyvhich formally define the dynamics of this class of models.
among the surviving fibers. Since the number of fibers supwith the probability distribution, Eq(2), the recursion rela-
porting the load has decreased, the redistributed stress f@n (6) clearly shows that none of the fibers break for an
greater than the initial stress and this causes further breakirigitial stressoo<o, , while on application ofoy>og, all
of fibers. The process continues till a state of mechanicafibers in the bundle break simultaneously.
equilibrium is reached, where the surviving fibers have The fixed pointd22] of the model,oc* andU*, are de-
strengths greater than the redistributed stress, or till all fibergermined by the following relations:
in the bundle are broken. The state of mechanical equilib-
rium, if it exists, appears as a fixed point of the model under c*[1-P(o*)]=0y (7)
the assigned dynamics.
The nature of the breaking dynamics allows it to be rep-and
resented as a recursion relation operating in discrete time
steps[17,19,2Q. If U, is the fraction of fibers in the initial U*+P(op/U*)=1. (8
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FIG. 2. (a) The density functiop and(b) the probability distri- FIG. 3. The fixed points ofa) the redistributed stress, aitb)

bution P of random fiber strengths,.sp distributed with uniform  the surviving fraction of fibers for the particular probability distri-
density in the intervalo ,or]. In the particular instance shown in bution of fiber strengths shown in Fig. 2. In each part of the figure,
the figureo =0.15 andog=0.75. the curve for the stable fixed points is shown by a bold solid line
and that for the unstable fixed points is shown by a bold broken
Though the quantities, and U, evolve in time till they line. As in Fig. 2, we haver, =0.15 andor=0.75, so thatr§"
reach their fixed point values, E(B) shows that their prod- =0.234375; the position of the critical point is marked by an ar-
uct o,U, is a constant of motion, always equal to the initial rowhead. Fowrg<o |, the fixed points are trivial, since there are no
valueo. All static and dynamic properties of the models arebroken fiberso™ =y andU* =U,=1.
consequences of this invariance.

(0*)°—oro™* +0oo(og—0)=0 (13
lll. CRITICAL PROPERTIES FOR UNIFORM DENSITY and
OF FIBER STRENGTHS
We consider first the case where the random strengths (U*)2—< IR )U*+ il =0. (14)
omresnOf the fibers are distributed with uniform density in the OR™ 0L OR™ 0L

interval[ o ,or]. The normalized density function is Consequently, each of the recurrences, Ea8) and (12),

0, 0= Tprest< O have two fixed points
1 oR UzR 1/2
— < < * _ 1/ —
POtvest OR—OL’ LT Ties= R ® Ul'Z_Ti(O-R oL ZL(O'R—UL) | . (19
0, OR<Othresh
d the probability distribution, by the definition in E@) T M i o v
and the probability distribution, by the definition in , iy s 771 by Y
is given by(Fig. 2) (0rR=01)  (0r—0) (or=01) .
0. 0= Otpresti= 1 The subscripts 1 and 2 stand for the expressions containing
] Othresi— oL _ _ the plus and the minus sign, respectively. Whilg andU7
P(Tinresn) = op—o, ' LT 7mes=9R - (10)  are stable fixed pointsr? andU% are unstabléFig. 3. It is
1 < clear that the fixed points for the redistributed stress and the
, OR™ Othresh

surviving fraction of fibers are related by
We consider onlyog> o as the caserg= o is trivial. «

With this particular choice of the distribution of fiber « IR %21 17)
strengths, the recursion relatiofs) and (6), for an initial L2 gp—o

stresso| <op<oR, appear as _ ) i
The quadratic equation43) and(14) show that the initial

B OR— O applied stressry has a critical value
Or41= 00| (11
R ' crit__ UZR (18)
a.nd 0 4(0'R_ U'L) '
1 oo at which their discriminants become zero and only a stable
Ut+1:—O_R_O_L TRTY, ) Uo=1. (12 fixed point exists. Since botlr andU have physical mean-

ings, a state of mechanical equilibrium exists if the quantities
The fixed point equations, obtained from E@g) and (8), o> andU7 are positive real valued; this happens only when
appear in quadratic form go<oy". For op>0§", there are no real-valued fixed
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points—the dynamics will continue till all fibers in the (a) (b)
bundle are broken. Therefore, a transition ocurs just above ~
o™ from a phase of partial failure of the bundle in equilib- N i N
rium to a phase of total failure. The order paramefefor
this phase transition is defined in terms of the stable fixed
point for the surviving fraction of fibers: - 2 1
) L Sa” %L )

O=Ui-Ui_ oy, oL<oo=<0g, (19 =t .t

where /_
o oo S ofs Cr 1I oo <.>'._ ol.s <I>'R 1I
I—crit: Z(O'R— O_L) (20) e e

FIG. 4. (a) The density functionp and(b) the probability distri-

is the value olU¥ under the critical initial stress. As E(L6) ~ Pution P of random fiber strengthépesy distributed with linearly
shows, the order parameter goes to zero continuously by igcreasing den_sny |n_the intervdlo, ,or]. In the particular in-
power law asr, approaches its critical value from below: ~ Stance shown in the figure, =0.15 andog=0.75.

oSt g\ 2 _ Thus, the asymptotic behavior of the surviving fraction of
O:(f) . o <og=ai™. (21)  fibers is a power-law decay—a critically slow relaxation to
IRTOL the fixed point:
It is obvious that the critical value must have the lower U*
1—crit
bound, . Ui~ Ifcritw Tt t—o
o'=0, (22 1/ 1
R
which, for the expression given in E(L8), requires that N E( aR—(rL)f' 28
or=207. (23 A special case of this model, with =0 andog=1, was

studied in Ref[23]. The critical properties obtained in Ref.
[23] can now be derived easily from the general results of
this section.

The above conditioi23) in turn imposes an upper bound on
the critical value of the initial stress:

crit ORr
0o S5 (29 IV. CRITICAL PROPERTIES FOR LINEARLY
INCREASING DENSITY OF FIBER STRENGTHS

Static critical behavior of the fiber bundle is observed in \ye consider next the case where the random strengths
the.suscepublllty of the f|xeq ppmt of the surviving fraction Tireen OF the fibers are distributed with linearly increasing
of fibers to changes in .th'e. |n|t!al streq@. From Eq.(16), density in the interva[ o, ,0], og>0, . The normalized
we see that the susceptibility diverges in the form of a POWEHensity function and the probability distribution of the fiber

law as the initial applied stress approaches its critical Val“%trengths are given bifllustrated in Fig. 4
from below:

du* 0, 0<Othresi< 0L
_ 1 crit -1/ crit
x=|=5—x(o§" —o9) o <op<0ogy . (25 2(Tthresti— OL)
do ° ° P(Tihresh = rest ZL , OLSOthresiSOR  (29)
(or—0y)
Dynamical critical behavior is observed in the process of 0 e
. . i . L. ’ R thresh
relaxation of the fiber bundle to a fixed point. At the critical
point oo=0", the evolution of the surviving fraction of ang
fibers given by Eq(12) is reduced to the following recur-
rence: 0, O0<0thresi< L
_\2
oR OR 1 P(0res) = (M) L=< OtresiSOR (30)
_ i — thres| — y L thresh R
Ut+1 OR— O 1 4(0_R_0_L) Ut ’ UO l! (26) OR— O
. . . L 1, OR< Othresh
and its only fixed point, a stable one, is given by E20).
The recurrenc€26) has a closed-form solution: Here, we introduce the following transformed quantities:
* *
—erit(1=UT i) o o o
U,— *_ o 1—crit . 2 _ 0 _ L _ t
b 1+ (- U (1) &0 o= o Ionmor Topma Y
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For an initial stresso <og<og (or I''<T'o<I'| +1)
along with the distribution of fiber strengths given by Eq.
(30), the recursion relationg) and (6) appear as

I'o
T 1o T T (32
and
Iy 2
Upr1=1— U_t_FL » Ug=1. (33

The fixed point equations, Eq&/) and(8), now assume the
following cubic form:

(T*)3—2T (T'*)2+(I'2—1)T* +T(=0, (34)
wherel'* =¢*/(og— o) and
(U*)3+(T2—1)(U*)2— (2T To)U* +T3=0. (35

Consequently, each of the recurrend88 and (33) have

PHYSICAL REVIEW E 67, 046122 (2003
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FIG. 5. The fixed points ofa) the redistributed stress, arfl)
the surviving fraction of fibers for the probability distribution of
fiber strengths shown in Fig. 4. In each part of the figure, the curve
for the stable fixed points is shown by a bold solid line and those for
the unstable fixed points are shown by bold broken lines. We have
o, =0.15 andog=0.75, so thair{"=0.3375; the position of the
critical point is marked by an arrowhead. As in the previous case,

three fixed points—only one in each case is found to beor oy<o , the fixed points are trivial, since there are no broken

stable. For the redistributed stress, the fixed points are

2 D
==I", +2K cos,

*
r* 3 3 (36)
2 ® @
I's=-T, —K coss + 3K sin, (37)
3 3 3
2 P D
I's=_T —K coss — 3K sin_, (39
3 3 3
where
1 | 2
and
[ (9-T%)—21,/2
cosd = L : ° (40)

(3+T7)3?

Similarly, for the surviving fraction of fibers, the fixed points
are

L PN, 41
ui= 3 + Jcosg, (41)
LT Jcos2 + 3 sin 42
273 cos§+ smg, (42
1-T? 0 0
5=—3 —Jcosg—\/ilsmg, (43)

where

fiberso* =0y andU* =Uy=1.

1
J §de—1f+6FJb (44)

and

COS@__(1—If)UFE—4J2+9FLFO]—27F§2 s
[(TZ—1)2+6IT'(]%? '

Of these fixed pointsI'} and U7 are stable, wheredsy ,
I'; andU% , U} are unstabléFig. 5).

Similar to the case in the preceding section the discrimi-
nants of the cubic equatiort34) and(35) become zero at the

critical valuesS™ (or I'S™ of the initial applied stress:

rit
o5

crit__
FO -
OR

= ATLO-TD+(B+TD%] (40

-0

and then each of the quantitifsandU have one stable and
one unstable fixed point. As before the critical point has the
trivial lower bound

a'gmk oL. (47
The expression of $™ in Eq. (46) shows that it approaches
the lower bound a$’| —«~ which happens for finite values
of o andog when (ocg— o )—0. It follows that the upper
bound for the critical point is also trivial:

og"<og, (48)
which is different from the conditiori24) for the case of

uniform distribution. At the critical point we get from Egs.
(40) and (45),
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cos® ;;=c0s0 ;= — 1 (49 (a) (b)
108 -
or 3k 3F
D it = O o= 7. (50)
< 2} ~2}
The stable fixed point§’; andU7 are positive real val- bg cﬁc bé
ued whenl',<I'S™; thus the fiber bundle always reaches a & ’ -4

state of mechanical equilibrium after partial failure under an
St Forog>o5™ (or T'y>T'g™M),

initial applied stressro=< oy
I'} and U} are no longer real valued and the entire fiber  °; o, o5 o 1 ey 5 % 1
bundle eventually breaks down. The transition from the Civest Spvoen

phase of partial failure to the phase of total failure takes

place whero just exceedsargrit and the order parameter for

this phase transition is defined as in Ef9)

*
1—crit*

O=U* - (51)

Close to the critical point, but below it, we can write, from
Egs.(45) and(50), that
3\/5[\8!’“(3_,_1‘*5)3/4(1’*8“{_Fo)l/z

T—0=sin@= .
[(FE_ 1)2+ GFLrgrlt]3/2

(52

and the expressions for the fixed points in E44) and(42)
reduce to the following forms:

Ui =UT_ e Sg%i+rfﬁmun §"'=To)"* (53
(I'2—1)2+6I IS
and
crit 27\ 3/4
ngugm_uéﬁ;;inggﬂf?LT&”% (54)
where
-T2 1
o= U=+ 3V(Mi-1)*+6IIg"

(59

is the stable fixed point value of the surviving fraction of
fibers under the critical initial stress;". Therefore, follow-
ing the definition of the order parameter in E§1), we get
from the above equation

- Fgrit(3+ri)3/4 ( crit__
(I'f-1)2+6r I'g"

s Fo)llz, I‘O_)I‘grit.

(56)

On replacing the transformed varialllg by the originalo,

Eq. (56) shows that the order parameter goes to zero continu-

ously, following the same power law as in EQ1) for the
previous case whew, approaches its critical value from
below.

FIG. 6. (a) The density functionp and(b) the probability distri-
bution P of random fiber strengthey, s, distributed with linearly
decreasing density in the intervpd ,or]. Similar to the cases
shown in Figs. 2 and 4, we hawg =0.15 andor=0.75 in this
example also.

duz

dUO Oc(1—*(6rit_ 1—*0)—1/2'

crit
Foﬂ FO .

(57)

The critical dynamics of the fiber bundle is given by the
following asymptotic closed form solution of the recurrence
(33 for To=T":

* ( Ifcrit)[l 1
U= Ui eie™ crity 2 crity 1% 1 t—eo,
3(FO ) _ZFLFO Ulfcrit
(58
whereI'{™ and U%_;, are given in Eqs(46) and (55), re-

spectively. This shows that the asymptotic relaxation of the
surviving fraction of fibers to its stable fixed point under the
critical initial stress has the same inverse of time form as
found in the case of uniform density of fiber strengfks).

(28)].

V. CRITICAL PROPERTIES FOR LINEARLY
DECREASING DENSITY OF FIBER STRENGTHS

Contrary to the case of the preceding section, we now
consider a fiber bundle where the random threshold values
are distributed with a linearly decreasing density in the inter-
val [o ,or], og>0 . Instead of Eqs(29) and (30), we
now have the following normalized density function and
probability distribution(illustrated in Fig. 6:

0, O<0hresi< oL
2( OR™ O'thresh)
o =y ———— =, O, =0 <or (59
p( thresk) (op— O_L)z L thresi= OR (59)
0, OR<Othresh

Similarly, the susceptibility diverges by the same power

law as in Eq.(25), on approaching the critical point from
below:

and
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0, O0<0hresi< oL

2
OR™ Othresh
—— |, OLSOthresiSOR

P(Tthresn = 1_(

1, OR<Othresh

OR—OL

(60)

With the transformed quantities, defined in E§1), the
recurrencesb) and(6) for o <o <o appear as

I'o
F”l_(1+FL—Ft) G
and
Io\2
Ut+l: 1+F|__U_ , U0:1 (62)
t

The fixed point equations are again cubic
(I*)3=2(1+T )(T*)2+(1+T)T*—Ty=0, (83

(U*)3—(1+T)3(U*)2+2(1+T)[U* —T2=0
(64)

and they have the following solutions:

!

2
If=5(1+T1)+2K cos, (65)

. 2 @ @
F3=3(1+T)—K cos?+\/§K sing-,  (66)

2 O’ Ry
F§=—(1+FL)—K'COS?—\/§K’SIH—, (67)

3 3
where
,_1+F|_ 68
- 3 ] ( )
oo 2o 69
COSs —m— ( )
and
*—(1+FL)2+2J’ o 70
173 oSz (70
1+T,)2 e’ e’
;IQ—J’COS—-F\/EJ’SH’]—, (72)
3 3 3
1+T,)2 (0N (M
§=Q—J’cos——\/§\]’sin—, (72)
3 3 3
where

1
3=+ =6(1+T T, (73

PHYSICAL REVIEW E 67, 046122 (2003
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FIG. 7. The fixed points ofa) the redistributed stress, aitb)
the surviving fraction of fibers for the probability distribution of
fiber strengths shown in Fig. 6. The curve for the stable fixed points
is shown by a bold solid line and those for the unstable fixed points
are shown by bold broken lines. In this example too, we have
=0.15 andogr=0.75; hereoi"=0.173 611, marked by an arrow-
head. The critical point is located lower than that in Fig. 5 due to
abundance of fibers of lower strengths compared to the previous
case.

(14T )3[(1+T)3—9T ] +23/2

cos®’
[(1+T)*=6(1+T ) ]%?

(74)

HereI'; and U7 are stable fixed points, while the rest are
unstable(Fig. 7).
The discriminants of Eqs(63) and (64) show that the

critical applied stress in this casel™ (or IS, is given
by
crit’
crit’ _ %0 :i 3
L§= o= (14T (79
or
) 403
crit’ _ R
70 T 2Uor—0)? 79

In order to satisfy the conditiorarg”t'z(rL, it requires
from Eq. (76) that

O'R>30'L, (77)

which imposes an upper bound

et g
ol < ?R . (79)

Like before, forl' < rg“t’ , the stable fixed points are real
valued, which indicates that only partial failure of the fiber
bundle takes place before a state of mechanical equilibrium
is reached; fol > rgf“' , the fixed points are not real and a
phase of total failure exists. The order paramefeof the
transition is given by the definition in Eq51). For I'y
=TS we get the following properties from E¢69)—(71)
and Eq.(74):
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F = Us = 5(14T))?, (79) phase trans.iti_on. However this general conclusion may not
be true for finite-sized bundld24].
cos®/=—1 or O = (80)
VI. DISCUSSION
and
In this paper, we have studied the critical properties of
cosbl =1 or ®..=0, 81) failure in a class of fiber bundle models under an applied

stress. The models are simple dynamical systems that show
an irreversible phase transition. We have determined the
static and dynamic critical properties associated with the
and®’ differ by 7 radians. phase trans@tion.'Since the models have 'been defined Without
Near the critical point, but below it, we get from EGZ0) any fluctuatlo_ns in the local de_nS|ty of fiber strengths orin
and (71) the load shar_lng, these are equivalent to a_mean-flelc_i theory.
We have defined a new order parameter in 8§) which
shows that the transition is of second order. It is supported by
facts that are characteristic of second-order transitions: the
susceptibility diverges at the critical point and the decay of
surviving fraction of fibers with time at the critical point
and follows a power law. Besides, the relaxation time of the
bundle diverges from both sides of the critical point: for an
4 ’ initial stress infinitesimally below the critical point the sur-
Us=U3_.i— _(1+rL)1/2(r8”t’_r0)1/2_ (83)  viving fraction of fibers will take an infinite time to reach its
3 stable fixed point, whereas infinitesimally above the critical
- . point it will take an infinite time to get past the fixed point.
Therefore, by the defmmon. qf. th.e order parameter in Eq'By obtaining the same critical exponents for three different
(51) and that of the susceptibility in E¢57), we getin this  hapijity distributions of fiber strengths, we are inclined to
caseOx(I'§™ —T'g)"2 and y<(I'§™" —To) "% To—T§".  conclude that these exponents are universal. The universality
These power laws have the same exponents as the correfthe critical exponent for susceptibility was also reported in
sponding ones in the previous cases and differ from thosRefs.[19,20.
only at the critical point and the critical amplitude. The two models studied in Secs. IV and V seem to be
At the critical point, the asymptotic relaxation of the sur- related by the fact that their density functions, E@®) and
viving fraction of fibers to its stable fixed poifipbtained as  (59), can be transformed from one to the other by a reflection
an asymptotic solution to Eq62)] is again found to be a on the line oyyeq= (0L + or)/2 [compare Figs. @ and

Comparing Egs(81) and(80) with Eqg. (50), we see that the
critical values of® and®’ are the same, whereas thosealof

4 "
Ul =Ul_ait 3(L+TO)YATE" ~T™ (82

power law decay, similar to Eq&28) and (58): 6(a)]. But the fixed point equations and their solutions do not
have this symmetry. This is because the density function
4UY (O thresn does _not appear dirgct[y in. the recqrsion relations

Ui— ’{,cm~§ T t—oo for the dynamics. It is the distribution functioR( o resp

that appears in the recursion relations. Equati8® and

16 1 (60) show that the distribution functions of these two models

~ 2—7(14—1“,_)2?. (84)  are not mutually symmetric about any value of the threshold
stressoyesn[COMpare Figs. @) and Gb)]. However a cer-

The critical behavior of the models reported in this andt@in relation exists between the critical values of the applied

the previous two sections show that the power laws foungess for a special case of these twcgri{nodels:Lﬁ:O, we
here are independent of the form of the probability distribu-96t from Eqs.(46) and (75 that og/or=4/27 and
tion P. The three probability distributions studied have ac§" /og=4/27, respectively; therefore we havef" /o
common feature: the function*[1—P(o*)] has a maxi- = (o§"og)?.

mum in the interval ¢ ,og) which corresponds to the criti- Finally, we compare the fiber bundle model studied in this
cal value of the initial applied stress. All probability distri- paper with the mean-field Ising model. Though the order
butions having this property are, therefore, expected to leagarameter exponetiéqual to3) of this model is identical to

to the same universality class as the three studied here. If theat of the mean-field Ising model the two models are not in
probability distribution does not have this property, we maythe same universality class. The susceptibility in these mod-
not observe a phase transition at all. For example, considerels diverge with critical exponents and 1, respectively, on
fiber bundle model WithP(oyes)=1—oyresh Twmresh  approaching the critical point. The dynamical critical expo-
=1. Hereo*[1-P(c*)]=1 and the evolution of the fiber nents are not the same either: in this fiber bundle model the
bundle is given by the recursion relatidh, ;=U,/og that  surviving fraction of fibers under the critical applied stress
implies that there is no dynamics at all fop=1 and an decays toward its stable fixed pointtas, whereas the mag-
exponential decay to complete failurg,= (o) ", for oq netization of the mean-field Ising model at the critical tem-

>1. There are no critical phenomena and, therefore, nperature decays to zero 852
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